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Abstract

Local active noise control systems aim to produce zones of quiet at a number of

desired locations within a sound field, such as the ears of an observer. The resulting

zones of quiet are usually centered at the error sensors, and are often too small to

extend from the error sensors to the observer’s ears. To overcome these problems,

virtual sensing methods have been suggested. These methods are based on estimat-

ing the error signals at a number of locations remote from the physical locations of

the error sensors. By minimising the estimated error signals, the zones of quiet can

be moved away from the error sensors to the locations where noise control is de-

sired, i.e. the virtual locations. In this paper, the active noise control problem under

consideration is analysed using a state-space model of the plant. Kalman filtering

theory is then used to develop a virtual sensing algorithm that computes optimal

estimates of the error signals at the virtual locations. The developed algorithm is

implemented on an acoustic duct arrangement, and the real-time estimation per-

formance at a virtual location inside the acoustic duct is analysed. Furthermore,
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the developed algorithm is combined with the filtered-x LMS, and the results of

real-time broadband feedforward control experiments at the virtual location are

presented.
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1 Introduction

Local active noise control systems aim to produce zones of quiet at a number

of desired locations within a sound field, such as the ears of an observer. The

resulting zones of quiet are usually centered at the error sensors, and are of-

ten too small to extend from the error sensors to the observer’s ears [1]. To

overcome these practical limitations, a number of virtual sensing methods for

local active noise control systems have been suggested [2–12]. These meth-

ods can be used to obtain estimates of the error signals at locations remote

from the physical locations of the error sensors. By choosing these remote

locations to coincide with the desired locations of maximum attenuation, i.e.

the virtual locations, estimates of the error signals at the observer’s ears can

be obtained without physically locating error sensors inconveniently close to

the observer’s head. This effectively creates virtual sensors at the virtual lo-

cations, and subsequent minimisation of the estimated virtual error signals

by an active noise control algorithm results in zones of quiet that are moved

away from the physical location of the error sensors to the desired locations

of maximum attenuation.

∗ Corresponding author. Tel.:+61 8 8303 6940; fax: +61 8 8303 4367
Email address: cornelis.petersen@adelaide.edu.au (Cornelis D. Petersen).
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The first virtual sensing algorithm that was suggested in the literature is called

the virtual microphone arrangement [2]. In this algorithm, it is assumed that

the primary disturbances at the virtual sensors, which are the disturbances

that need to be attenuated, are equal to the primary disturbances at the

physical sensors. This assumption can be made provided that the primary

sound field changes relatively little between the physical and virtual sensors.

This assumption is not made in a virtual sensing algorithm called the remote

microphone technique [5,6], where an FIR or IIR filter matrix is used that

computes an estimate of the primary disturbances at the virtual sensors from

the primary disturbances at the physical sensors. In the virtual microphone ar-

rangement [2], this filter matrix is assumed to be the identity matrix, and this

algorithm is therefore a simplified version of the remote microphone technique.

Both algorithms also require models of the secondary transfer paths between

the control sources and the physical and virtual sensors. The required trans-

fer path models are usually estimated in a preliminary identification stage by

placing physical sensors at the virtual locations. In the virtual microphone ar-

rangement [2] and the remote microphone technique [5,6], these transfer paths

are modeled by FIR or IIR filter matrices.

The adaptive LMS virtual microphone technique [8,9] is another virtual sens-

ing algorithm that has been proposed. In this algorithm, an array of physical

sensors is used to obtain an estimate of the virtual error signal. This esti-

mate is computed as a weighted summation of the physical error signals. The

weights for each of the physical error signals are determined in a preliminary

identification stage in which a physical sensor is placed at the virtual location.

The difference between the error signal measured by this sensor and the es-

timated virtual error signal is then minimised by adjusting the weights using
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the LMS algorithm [13]. After convergence of the weights, the physical sensor

is removed from the virtual location, such that a virtual sensor is effectively

created at this location.

Since the aim of the virtual sensing algorithm is to compute an accurate es-

timate of the virtual error signals, the problem of virtual sensing for active

noise control can be formulated as a linear estimation problem [14]. In this pa-

per, the virtual sensing problem is therefore analysed using a Kalman filtering

approach. In this approach, the active noise control system under considera-

tion is modeled by a state-space system whose outputs are the physical and

virtual error signals. One of the major advantages of the state-space formu-

lation over the transfer function formulation, which is employed in [2,5,6,12],

is that there is no principle structural difference between the single- and the

multi-channel case. The idea behind the Kalman filter approach taken here

is that the information contained in the physical error signals can be used

to compute estimates of the plant states, and the estimated plant states can

be used to compute estimates of the virtual error signals. Furthermore, mea-

surement noise on the physical sensors, including the ones that are placed at

the virtual locations in a preliminary identification stage of the plant, can be

conveniently included in the modeling of the problem, and its effect on the

estimation performance of the virtual sensing algorithm can be analysed.

The main advantage of the proposed method over the virtual sensing methods

introduced in [2,12] is that the assumption of equal primary disturbances at

the physical and virtual sensors is not made. This therefore results in more

accurate estimates of the virtual error signals, especially when the spatial

change of the primary sound field between the physical and virtual sensors

is significant and cannot be neglected. Another advantage over the methods
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suggested in [2,5,6,8,12] is that the proposed algorithm is derived including

measurement noise on the sensors, and that the effect of this measurement

noise on the estimation performance is discussed. Also, the optimal estimation

performance that can be obtained is analysed, showing that it is determined by

the properties of the physical and virtual primary transfer paths. Furthermore,

instead of using a number of FIR or IIR filter matrices to compute an estimate

of the virtual error signals [2,5,6,12], the virtual sensing algorithm proposed

here is described by one compact state-space model. The aim of this paper

therefore is to present a more complete analysis of the virtual sensing problem,

resulting in an algorithm that computes an estimate of the virtual error signals,

in the presence of measurement noise, which is shown to be optimal in the

least mean-square sense.

In Section 2, the active noise control problem under consideration is presented,

and the notation and assumptions used in the analysis of the problem are intro-

duced. In Section 3, it is assumed that physical sensors are temporarily located

at the virtual locations in a preliminary identification stage of the active noise

control system. A Kalman filter can then be formulated that computes optimal

estimates of both the physical error signals measured by the physical sensors,

and the virtual error signals measured by the physical sensors temporarily lo-

cated at the virtual locations for system identification purposes. In Section 4,

it is then assumed that the physical sensors located at the virtual locations in

the preliminary identification stage have been removed. Using the presented

Kalman filtering theory, a virtual sensing algorithm is then formulated that

computes optimal estimates of the virtual error signals, assuming that only the

physical error signals are directly measured. In Section 5, it is explained how

the developed virtual sensing algorithm can be combined with the filtered-x
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LMS algorithm [15], in order to minimise the estimated virtual error signals. In

Section 6, the developed algorithm is implemented in real-time on an acoustic

duct arrangement. The implemented algorithms are calculated in a prelimi-

nary identification stage, in which a state-space model of the plant is estimated

using subspace model identification techniques [16,17]. The estimation perfor-

mance and the broadband feedforward active noise control performance at a

virtual location inside the duct are analysed.

2 Problem description

In this section, the notation and assumptions used in the analysis of the active

noise control problem considered here are introduced. A block diagram of this

problem is shown in Figure A.1.

[Fig. 1 about here.]

Note that the implementation illustrated in Figure A.1 was adopted in previ-

ous research into virtual sensing methods for active noise control [2–12]. The

plant in this figure can be described by the following standard state-space

model [14]

z(n + 1) = Az(n) + Buu(n) + Bss(n)

ep(n) = Cpz(n) + Dpuu(n) + Dpss(n) + vp(n)

ev(n) = Cvz(n) + Dvuu(n) + Dvss(n) + vv(n),

(1)

with z(n) ∈ RN the states of the plant, s(n) ∈ RS the disturbance source

signals, u(n) ∈ RL the control signals, ep(n) ∈ RMp the physical error signals,
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ev(n) ∈ RMv the virtual error signals that are not directly measured during

real-time control, vp(n) ∈ RMp the physical measurement noise signals, and

vv(n) ∈ RMp the virtual measurement noise signals. The virtual measurement

noise signals are included to account for measurement noise on the physical

sensors that are temporarily located at the virtual locations during a prelim-

inary identification procedure of the considered active noise control system.

The state-space matrices in Equation (1) are real-valued and of appropriate

dimensions. Note that Equation (1) can be used to describe the input-output

behaviour of any multiple input multiple output linear time-invariant active

noise control system. The virtual sensing algorithm that will be derived here is

therefore not restricted to the acoustic duct case that is considered in Section 6

to demonstrate the effectiveness of the proposed method in a practical situa-

tion, and can be implemented in more complicated three-dimensional sound

fields, such as found inside more complex enclosures. The disturbance source

signals s(n) are assumed to be unknown white and stationary random pro-

cesses with zero-mean and unit covariance. The physical measurement noise

signals vp(n) and the virtual measurement noise signals vv(n) are also as-

sumed to be zero mean white and stationary random processes, such that the

following covariance matrices can be defined [14]

E





s(n)

vp(n)

vv(n)





s(k)

vp(k)

vv(k)

1



T

=



I ST
ps ST

vs 0

Sps Rp Rpv 0

Svs RT
pv Rv 0


δnk, (2)
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where E[·] denotes the expectation of the term inside brackets, I ∈ RS×S is

the identity matrix, and δnk the Kronecker delta function defined as

δnk =


1, ∀n = k

0, n 6= k.

(3)

In Equation (1), the term Bss(n) can be interpreted as process noise w(n),

with w(n) , Bss(n). The influence of the measurement noise signals and

the direct feedthrough from the signals s(n) on the physical and virtual error

signals can be combined into an auxiliary measurement noise signal v(n),

which is defined as

v(n) ,


Dpss(n) + vp(n)

Dvss(n) + vv(n)

 . (4)

Using these definitions of the process noise signals w(n) and the auxiliary

measurement noise signals v(n), the following covariance matrix can be defined

E




w(n)

v(n)




w(k)

v(k)



T
 =


Q̄s S̄T

s

S̄s R̄

 δnk. (5)

Using Equation (2), the covariance matrix Q̄s of the process noise w(n) is

therefore given by

Q̄s = BsB
T
s . (6)

The covariance matrix R̄ of the auxiliary measurement noise v(n) on the

physical and virtual sensors is defined as

R̄ =


R̄p R̄pv

R̄T
pv R̄v

 , (7)
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and is given in expanded form by

R̄ =


Rp + SpsD

T
ps + DpsS

T
ps + DpsD

T
ps Rpv + SpsD

T
vs + DpsS

T
vs + DpsD

T
vs

RT
pv + SvsD

T
ps + DvsS

T
ps + DvsD

T
ps Rv + SvsD

T
vs + DvsS

T
vs + DvsD

T
vs

 .

(8)

The covariance matrix S̄s between the auxiliary measurement noise v(n) and

the process noise w(n) is given by

S̄s =


S̄ps

S̄vs

 =


DpsB

T
s + SpsB

T
s

DvsB
T
s + SvsB

T
s

 . (9)

The aim of the adaptive controller included in Figure A.1 is to compute a con-

trol signal u(n) that minimises the error signals ev(n) at the virtual locations,

where maximum noise reduction is desired. For this purpose, the adaptive

controller generally requires the feedback information contained in the virtual

error signals [15]. However, these signals are not directly measured during real-

time control for the system considered here. The aim of the virtual sensing

algorithm included in Figure A.1 is therefore to compute an accurate esti-

mate êv(n) of the true virtual error signals, which can be calculated given the

directly measured physical error signals ep(n) and the deterministic control

signals u(n). This estimate can then be used as a feedback signal to the adap-

tive controller to compute a control signal u(n) that minimises the estimated

virtual error signals. If feedforward reference signals x(n) are available that

are strongly correlated to the disturbance source signals s(n), an adaptive

feedforward control algorithm can be used to minimise the estimated virtual

error signals. If such signals are not available, an adaptive feedback control

approach needs to be adopted.
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3 Kalman filtering

In this section, it is assumed that physical sensors are temporarily located at

the virtual locations in a preliminary identification stage of the plant defined

in Equation (1), such that the virtual error signals are directly measured. A

Kalman filter can then be formulated that computes optimal current estimates

of the physical and virtual error signals.

The Kalman filter can be described in at least two forms, which are usually

referred to as the prediction and time-measurement update forms [14]. The

prediction form results in an estimate of the states z(n+1) given the observa-

tions e(i) of the physical and virtual error signals up to time i = n, with the

state estimate denoted by ẑ(n+1|n), and with the error signals e(n) ∈ RMp+Mv

defined as

e(n) =


ep(n)

ev(n)

 . (10)

Using the prediction form, the predicted state estimates ẑ(n + 1|n) are com-

puted as [14]

ẑ(n + 1|n) = (A−KsC)ẑ(n|n− 1) + (Bu −KsDu)u(n) + Kse(n), (11)

with Ks ∈ RN×(Mp+Mv) the Kalman gain matrix given by

Ks =


K̃ps K̃vs

 , (12)

where tildes have been used on the Kalman gains to distinguish them from the

Kalman gain matrix Kps that will be introduced in Section 4. The matrices
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C and Du in Equation (11) are defined as

C =


Cp

Cv

 , Du =


Dpu

Dvu

 . (13)

Predicted estimates ê(n|n − 1) ∈ RMp+Mv of the physical and virtual error

signals are now computed, given the observations e(i) up to i = n− 1, as

ê(n|n− 1) = Cẑ(n|n− 1) + Duu(n). (14)

Using the above definitions, an innovations representation of the error signals

e(n) is given by [14]

ẑ(n + 1|n) = Aẑ(n|n− 1) + Buu(n) + Ksε(n)

e(n) = Cẑ(n|n− 1) + Duu(n) + ε(n),

(15)

with ε(n) ∈ RMp+Mv the innovation signals defined as

ε(n) = e(n)− ê(n|n− 1). (16)

Note that the innovations representation defined in Equation (15) and the

standard state-space model defined in Equation (1) result in error signals

e(n) that have the same second order statistics [14].

The time-measurement update form of the Kalman filter results in a current

estimate of the states z(n) given the observations e(i) of the physical and

virtual error signals up to time i = n, with the current state estimate denoted

by ẑ(n|n). The time-measurement update form is given by [14]

ẑ(n|n) = (I−MsC) ẑ(n|n− 1)−MsDuu(n) + Mse(n), (17)
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with Ms ∈ RN×(Mp+Mv) the innovation gain matrix given by

Ms =


M̃ps M̃vs

 . (18)

The following theorem summarises the above discussions and defines an opti-

mal solution for the Kalman gain matrix Ks that minimises

tr
(
E
[
ρ(n|n− 1)ρ(n|n− 1)T

])
, (19)

with ρ(n|n− 1) ∈ RN the predicted state estimation error defined as

ρ(n|n− 1) = z(n)− ẑ(n|n− 1). (20)

The theorem also defines an optimal solution for the innovation gain matrix

Ms that minimises

tr
(
E
[
ρ(n|n)ρ(n|n)T

])
, (21)

with ρ(n|n) ∈ RN the current state estimation error defined as

ρ(n|n) = z(n)− ẑ(n|n). (22)

A detailed proof of the presented theorem can be found in [14].

Theorem 1 (Kalman filter [14]) Let a state-space realisation of the plant

be given by Equation (1), and let the covariance matrices Q̄s, S̄s, and R̄ be

defined as in Equations (6)–(9). Furthermore, let

• the pair (C,A) be detectable;

• R̄ > 0, Q̄s − S̄T
s R̄−1S̄s ≥ 0;

• (A − S̄T
s R̄−1C, Q̄s − S̄T

s R̄−1S̄s) has no uncontrollable modes on the unit

circle.

Then the time-measurement update form of the Kalman filter, which gives

optimal current estimates ê(n|n) of the physical and virtual error signals given
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observations e(i) of the physical and virtual error signals up to i = n, is defined

by the state-space realisation


ẑ(n + 1|n)

ê(n|n)

 =


A−KsC Bu −KsDu Ks

C−CMsC Du −CMsDu CMs





ẑ(n|n− 1)

u(n)

e(n)


, (23)

where the Kalman gain matrix Ks, and the innovation gain matrix Ms are

given by

Ks = (APsC
T + S̄s)R

−1
ε

Ms = PsC
TR−1

ε ,

(24)

with Ps = PT
s > 0 the unique stabilising solution to the discrete algebraic

Ricatti equation (DARE) given by

Ps = APsA
T − (APsC

T + S̄T
s )(CPsC

T + R̄)−1(APsC
T + S̄T

s )T + Q̄s, (25)

and where Rε ∈ R(Mp+Mv)×(Mp+Mv) is the covariance matrix of the white in-

novation signals ε(n) defined in Equation (16), which is given by

Rε = E[ε(n)ε(n)T] =


R̃pε R̃pvε

R̃T
pvε R̃vε

 = CPsC
T + R̄. (26)

4 Virtual output estimation

In this section, it is assumed that the physical sensors that are used to di-

rectly measure the virtual error signals in a preliminary identification stage of
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the plant have been removed, or if present are only used to measure the per-

formance of the virtual sensing algorithm. Using the Kalman filtering theory

presented in Section 3, a virtual sensing algorithm can then be derived that

computes optimal estimates of the virtual error signals.

4.1 Stochastic part of the plant

To simplify the discussions presented here, it is first assumed that the deter-

ministic control signals are equal to zero, such that u(n) = 0. For this case,

the stochastic part of the plant can be written in innovations form, using

Equation (15), as

ẑ(n + 1|n) = Aẑ(n|n− 1) + K̃psεp(n) + K̃vsεv(n)

dp(n) = Cpẑ(n|n− 1) + εp(n)

dv(n) = Cvẑ(n|n− 1) + εv(n),

(27)

where dp(n) and dv(n) are the primary physical and virtual disturbances,

respectively. These primary disturbances are thus the error signals measured at

the physical and virtual sensors when the controller is switched off. The input-

output behavior of the state-space system in Equation (27) can be defined in

transfer function form as
dp(n)

dv(n)

 =


G̃ps

G̃vs




εp(n)

εv(n)

 , (28)

with state-space models of the transfer function matrices G̃ps ∈ RHMp×(Mp+Mv)
∞

and G̃vs ∈ RHMv×(Mp+Mv)
∞ , with RHM×N

∞ the set of all asymptotically stable
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rational M ×N transfer function matrices [18], given by

G̃ps ∼


A K̃ps K̃vs

Cp I 0

 , G̃vs ∼


A K̃ps K̃vs

Cv 0 I

 . (29)

An estimate d̂v(n|n) ∈ RMv of the virtual primary disturbances dv(n) is now

computed by filtering the physical primary disturbances dp(n) with a filter

H ∈ RHMv×Mp
∞ , such that

d̂v(n|n) = Hdp(n). (30)

An optimal solution for the filter H is calculated by minimising the cost func-

tion

J = tr
(
E[ε̃v(n)ε̃v(n)T]

)
, (31)

with ε̃v(n) ∈ RMv the virtual output errors defined as

ε̃v(n) = dv(n)− d̂v(n|n). (32)

Using Equations (28)–(30) and Parseval’s Theorem [15], an equivalent fre-

quency domain expression of the cost function defined in Equation (31) is

given by

Jε = ‖Gvs −HGps‖2
2, (33)

with ‖ · ‖2 the H2-norm of the inside term [18], and where state-space reali-

sations of the transfer function matrices Gps = G̃psR̃
1/2
ε and Gvs = G̃vsR̃

1/2
ε
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are defined as

Gps ∼


A K̃psR̃

1/2
pε + K̃vsR̃

1/2
pvε K̃vsR̃

1/2
vε

Cp R̃1/2
pε 0



Gvs ∼


A K̃psR̃

1/2
pε + K̃vsR̃

1/2
pvε K̃vsR̃

1/2
vε

Cv R̃1/2
pvε R̃1/2

vε

 ,

(34)

with R̃1/2
ε a matrix such that

R̃ε = R̃1/2
ε R̃T/2

ε , (35)

where R1/2
ε is defined as

R1/2
ε =


R̃1/2

pε 0

R̃1/2
pvε R̃1/2

vε

 . (36)

A block diagram of the considered optimisation problem is shown in Fig-

ure A.2.

[Fig. 2 about here.]

The following theorem defines a solution to this problem based on an outer-

inner factorisation of Gps, in which Gps is factorised into a stably invertible

co-outer factor Gps,co that is a minimum phase spectral factor of GpsG
∗
ps, and

a co-inner factor Gps,ci that only yields a phase shift. A detailed proof of the

presented theorem can be found in [19].

Theorem 2 (Causal Wiener solution for H [19]) Let state-space realisa-

tions of the transfer function matrices Gps ∈ RHMp×(Mp+Mv)
∞ and Gvs ∈
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RHMv×(Mp+Mv)
∞ be given by Equation (34), and assume that Gps does not have

any zeros on the unit circle. Then the following outer-inner factorisation can

be defined [18]

Gps = Gps,coGps,ci, (37)

where Gps,co has a stable left-inverse G†
ps,co. Furthermore, let the complemen-

tary co-inner factor G⊥
ps,ci be such that [G∗

ps,ci G⊥∗
ps,ci]

∗ is unitary, with G∗
ps,ci

the conjugate transpose of Gps,ci, and let [·]+ and [·]− indicate the causal and

anti-causal parts of the term inside the brackets. Then

Ho =
[
GvsG

∗
ps,ci

]
+

G†
ps,co (38)

minimises

J = ‖Gvs −HGps‖2
2, subject to H ∈ RHMv×Mp

∞ , (39)

and its minimum value is given by

Jmin = ‖Gvs −HoGps‖2
2 = ‖GvsG

⊥∗
ps,ci‖2

2 + ‖[GvsG
∗
ps,ci]−‖2

2. (40)

The minimum value of the cost function J defined in Equation (40) indicates

that, theoretically, the estimation performance is determined by the properties

of the primary transfer path matrices Gps and Gvs. The first term in Equa-

tion (40) contributes to the minimum value of the cost function when GvsG
⊥∗
ps,ci

is non-zero. This occurs when there are disturbances that contribute to the

virtual primary disturbances dv(n), but these disturbances are not observed

at the physical sensors, and are thus not contained in the physical primary

disturbances dp(n) [19,20]. The virtual sensing algorithm is therefore not able

to provide an estimate of this unobservable part of the virtual primary dis-

turbances. The first term in Equation (40) is therefore related to the physical
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and virtual sensor configuration that is used in the active noise control sys-

tem. The locations of the physical sensors should thus be chosen such that

all the modes that contribute to the virtual primary disturbances are observ-

able at the physical sensors. The second term in Equation (40) is related to

the restriction that the transfer function matrix H should be causal [19,20].

Therefore, the second term is determined by delays and non-minimum phase

zeros in the physical primary transfer function matrix Gps, which contribute

to the anti-causal terms in G∗
ps,ci. To minimise the contribution of this second

term, the physical and virtual sensor configuration should be chosen such that

the physical primary disturbances contain time-advanced information about

the virtual primary disturbances. This ensures that the virtual primary dis-

turbances can be causally estimated from the physical primary disturbances.

In Appendix A, a minimal state-space realisation of the optimal filter solution

Ho defined in Equation (38) is derived. Applying the theory presented in

this appendix to the realisations of Gps and Gvs defined in Equation (34), a

minimal state-space realisation of Ho is given, similarly to Equation (A.18),

by

Ho ∼


A−KCp K

Cv −MCp M

 , (41)

where the matrices K and M are given by

K = (AXsC
T
p + S)(CpXsC

T
p + R̃pε)

−1,

M = (R̃T
pvε + CvXsC

T
p )(CpXsC

T
p + R̃pε)

−1,

(42)

with Xs = XT
s ≥ 0 is the stabilising solution to the DARE given by

Xs = AXsA
T − (AXsC

T
p + S)(CpXsC

T
p + R)−1(AXsC

T
p + S)T + Q, (43)
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where

Q = KsRεK
T
s , S = Ks


R̃pε

R̃T
pvε

 . (44)

From Theorem 1, the matrices in Equations (42)–(44) can also be written as

R̃T
pvε = CvPsC

T
p + R̄T

pv, Q = APsA
T −Ps + Q̄s

R̃pε = CpPsC
T
p + R̄p, S = APsC

T
p + S̄T

ps.

(45)

Defining the matrix Pps , Ps + Xs, the matrices K , Kps and M , Mvs in

Equation (42) can thus also be written as

Kps = (APpsC
T
p + S̄T

ps)(CpPpsC
T
p + R̄p)

−1,

Mvs = (CvPpsC
T
p + R̄T

pv)(CpPpsC
T
p + R̄p)

−1,

(46)

where Pps = PT
ps > 0 is the stabilising solution to the DARE given by

Pps = APpsA
T − (APpsC

T
p + S̄T

ps)(CpPpsC
T
p + R̄p)

−1(APpsC
T
p + S̄T

ps)
T + Q̄s.

(47)

The DARE in the above equation is found by substituting the matrix rela-

tionships in Equation (45) into the DARE in Equation (43).

In summary, for the case that the deterministic control signals are equal to

zero, a state-space realisation of the virtual sensing algorithm that computes

an optimal current estimate d̂v(n|n) of the virtual primary disturbances given

observations dp(i) of the physical primary disturbances up to i = n is defined
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as 
ẑ(n + 1|n)

d̂v(n|n)

 =


A−KpsCp Kps

Cv −MvsCp Mvs




ẑ(n|n− 1)

dp(n)

 , (48)

where the Kalman gain matrix Kps and the virtual gain matrix Mvs are given

by Equation (46).

4.2 Including the deterministic part of the plant

In the previous section, the virtual sensing problem was analysed assuming

that the deterministic control signals were equal to zero, and only the stochas-

tic part of the plant was thus considered. In this section, it is assumed that

the controller in Figure A.1 computes a control signal u(n), and it is explained

how the deterministic part of the plant can be included into the virtual sens-

ing algorithm presented in the previous section. The deterministic part of the

state-space model of the plant in Equation (1) is given by

z(n + 1) = Az(n) + Buu(n)

yp(n) = Cpz(n) + Dpuu(n)

yv(n) = Cvz(n) + Dvuu(n),

(49)

where yp(n) and yv(n) are the physical and virtual secondary disturbances,

respectively. These secondary disturbances are thus the measurement noise

free error signals at the physical and virtual sensors when the primary source

is switched off. A current estimate êv(n|n) of the virtual error signals is now

calculated by superposing the current estimate d̂v(n|n) of the virtual primary

disturbances defined in Equation (30) and the virtual secondary disturbances
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yv(n), such that

êv(n|n) = d̂v(n|n) + yv(n) = Hodp(n) + yv(n), (50)

with a state-space solution for the optimal filter Ho defined by Equation (48).

Because the physical primary disturbances are given by dp(n) = ep(n)−yp(n),

Equation (50) can also be written as

êv(n|n) =


Gvu −HoGpu Ho




u(n)

ep(n)

 , (51)

where state-space realisations of the transfer functions matrices Gpu and Gvu

are defined from Equation (49) as

Gpu ∼


A Bu

Cp Dpu

 , Gvu ∼


A Bu

Cv Dvu

 . (52)

Using the state-space realisations defined in Equations (48) and (52), it can be

shown that a minimal state-space realisation of the transfer function matrix

on the right-hand side of Equation (51) is given by


Gvu −HoGpu Ho

 ∼


A−KpsCp Bu −KpsDpu Kps

Cv −MvsCp Dvu −MvsDpu Mvs

 . (53)

The presented discussion can now be summarised by the following theorem, in

which the virtual sensing algorithm that includes both the deterministic and

stochastic part of the plant is defined.

Theorem 3 (Virtual sensing algorithm) Let a state-space realisation of

the plant be given by Equation (1), and let the covariance matrices Q̄s, S̄ps,
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R̄p, and R̄pv be defined as in Equations (2)–(9). Furthermore, let

• the pair (Cp,A) be detectable;

• R̄p > 0, Q̄s − S̄T
psR̄

−1
p S̄ps ≥ 0;

• (A− S̄T
psR̄

−1
p Cp, Q̄s − S̄T

psR̄
−1
p S̄ps) has no uncontrollable modes on the unit

circle.

Then a state-space realisation of the virtual sensing algorithm that gives an

optimal current estimate êv(n|n) of the virtual error signals given observations

ep(i) of the physical error signals up to i = n is defined as


ẑ(n + 1|n)

êv(n|n)

 =


A−KpsCp Bu −KpsDpu Kps

Cv −MvsCp Dvu −MvsDpu Mvs





ẑ(n|n− 1)

u(n)

ep(n)


, (54)

where the Kalman gain matrix Kps ∈ RN×Mp and the virtual gain matrix

Mvs ∈ RMv×Mp are given by

Kps = (APpsC
T
p + S̄T

ps)R
−1
pε ,

Mvs = (CvPpsC
T
p + R̄T

pv)R
−1
pε ,

(55)

with Pps = PT
ps > 0 the unique stabilising solution to the DARE given by

Pps = APpsA
T − (APpsC

T
p + S̄T

ps)(CpPpsC
T
p + R̄p)

−1(APpsC
T
p + S̄T

ps)
T + Q̄s,

(56)

and where Rpε ∈ RMp×Mp is the covariance matrix of the white innovation

signals εp(n) defined in Equation (16), which is given by

Rpε = E[εp(n)εp(n)T] = CpPpsC
T
p + R̄p. (57)
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4.3 Discussion of virtual sensing algorithm

Comparing the state-space realisation of the virtual sensing algorithm defined

in Theorem 3 with the state-space realisation of the Kalman filter defined

in Theorem 1, it can be noted that the Kalman gain matrix Kps defined in

Equation (55) is equivalent to the Kalman gain matrix that would result if

a Kalman filter was designed using Theorem 1 with only the physical error

signals ep(n) available for the computation of the state estimates. This is to

be expected because the virtual error signals are not directly measured during

real-time control and can therefore not be used to compute estimates of the

plant states. Another interesting observation is that the virtual gain matrix

Mvs defined in Equation (55) can also be written as

Mvs = CvMps + R̄T
pvR

−1
pε , (58)

with the innovation gain matrix Mps given by

Mps = PpsC
T
p R−1

pε . (59)

Again, it can be seen that the innovation gain matrix Mps defined in Equa-

tion (59) is equivalent to the innovation gain matrix that would result if a

Kalman filter was designed in time-measurement update form using Theo-

rem 1 with only the physical error signals ep(n) available for computing the

current state estimates. In other words, if the auxiliary measurement noise sig-

nals on the physical and virtual sensors are uncorrelated, such that R̄pv = 0

in Equation (7), the virtual gain matrix defined in Equation (58) is equal to

Mvs = CvMps. For this case, the current estimate of the virtual error signals
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is calculated from Equation (54) as

êv(n|n) = (Cv−MvsCp)ẑ(n|n−1)+(Dvu−CvMpsDpu)u(n)+CvMps. (60)

Comparing this equation to Equation (17), it can thus be seen that

êv(n|n) = Cvẑ(n|n) + Dvuu(n), (61)

with ẑ(n|n) the current estimate of the states calculated given observations

ep(i) of the physical error signals up to time i = n. This result is intuitive,

because when the auxiliary measurement noise signals on the physical and

virtual sensors are uncorrelated, the auxiliary measurement noise signals on

the virtual sensors cannot be predicted from the physical error signals. In

other words, for this case the physical error signals only contain information

that can be used to compute current state estimates ẑ(n|n), and a current

estimate êv(n|n) of the virtual error signals is then computed as defined in

Equation (61).

5 Filtered-x LMS algorithm

As illustrated in Figure A.1, the final aim of the active noise control system

considered here is to minimise the current estimate of the virtual error signals,

such that the zones of quiet are moved away from the physical sensors to the

virtual locations where maximum noise reduction is desired. In the acoustic

duct experiments presented in Section 6, it is assumed that a feedforward ref-

erence signal x(n) is available, and the filtered-x LMS algorithm [15] is used to

minimise the current estimate of the virtual error signal. It is now explained

how this algorithm can be combined with the virtual sensing algorithm pre-
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sented in Section 4. To keep the discussion simple, it is assumed that there is

only one control source, one feedforward reference signal, and one virtual error

signal. A detailed discussion of the filtered-x LMS algorithm for the multiple

reference MIMO case can be found in [15].

For the active noise control problem considered here, the filtered-x LMS algo-

rithm is given by [15]

u(n) = w(n)Tx(n),

w(n + 1) = w(n)− µrv(n)êv(n|n),

(62)

with µ ∈ R+ the convergence coefficient, êv(n|n) the current estimate of the

virtual error signal, w(n) ∈ RI a vector of filter coefficients given by

w(n) =


w0(n) w1(n) . . . wI−1(n)

T

, (63)

x(n) ∈ RI a vector of feedforward reference signals defined as

x(n) =


x(n) x(n− 1) . . . x(n− I + 1)

T

, (64)

and rv(n) ∈ RI a vector given by

rv(n) =


rv(n) rv(n− 1) . . . rv(n− I + 1)

T

, (65)

with rv(n) the virtual filtered-reference signal. This signal is generated by fil-

tering the feedforward reference signal x(n) with the virtual secondary transfer

path Gvu, such that

rv(n) = Gvux(n), (66)

with a state-space realisation of the secondary virtual transfer path Gvu de-

fined in Equation (52). In the real-time experiments presented in the next
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section, a state-space model of this transfer path is used to generate the vir-

tual filtered-reference signal.

6 Acoustic duct experiments

The algorithms introduced in the previous sections were implemented on an

acoustic duct arrangement. This arrangement is now described after which

experimental results are presented and discussed.

6.1 Experimental arrangement

Figure A.3 shows a schematic diagram of the rigidly terminated rectangular

acoustic duct that was used in the real-time experiments. The acoustic duct

has length L = 4.830m, width 0.205m, and height 0.205m.

[Fig. 3 about here.]

A 4′′ loudspeaker located at xp = 4.730m is used as a primary disturbance

source and another 4′′ loudspeaker located at xs = 0.100m as a control source.

The input signal to the primary loudspeaker is a white noise signal filtered

by an 8th order Butterworth filter with a pass-band between 50–500Hz. This

signal is also used as a feedforward reference signal x(n) in the filtered-x

LMS algorithm. An electret microphone located at xph = 1.475m is used as a

physical sensor. The virtual location is chosen as xv = 1.575m at a distance of

10.0 cm from the physical sensor. This distance proved to be large enough to

demonstrate the effectiveness of the proposed method. An electret microphone

is positioned at the considered virtual location, which is used in a preliminary
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identification stage of the plant described in Section 6.2 and also to measure

the performance of the implemented virtual sensing and active noise control

algorithms. To implement the developed algorithms in real-time, the host-

target software program xPC Targetr is used. A sampling frequency of

fs = 1.6 kHz is employed in the real-time experiments.

6.2 Preliminary identification stage

Subspace model identification techniques [16,17] are used to estimate a state-

space model of the acoustic duct arrangement in innovations form, which is

defined from Equation (15) as

ẑ(n + 1|n) = Aẑ(n|n− 1) + Buu(n) + Ksε(n)

e(n) = Cẑ(n|n− 1) + Duu(n) + ε(n).

(67)

Given measured input-output data {u(n), e(n)}Ns
n=1, the objective of subspace

model identification is to estimate the state-space matrices (A,Bu,C,Du)

and the Kalman gain matrix Ks) up to a similarity transformation, and the

covariance matrix Rε = E[ε(n)ε(n)T] of the innovation signals. A minimum-

phase relationship between the innovation signals ε(n) and the error signals

e(n) is guaranteed by constraining the eigenvalues of A − KsC to be in-

side the unit circle. Several subspace identification algorithms have been pro-

posed [16,17,21], which are all based on numerically reliable algorithms such

as the QR-factorisation and singular value decomposition. In the acoustic duct

experiments presented here, a subspace model identification algorithm called

SSARX proposed in [22] is used.
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A two-step identification procedure is used in the experiments, in which the

deterministic part and the stochastic part of the plant are identified separately

by setting the input signal into the primary loudspeaker equal to zero in the

first step, such that s(n) = 0, and the control signal equal to zero in the

second step, such that u(n) = 0. A one step approach in which a full model

of the plant is estimated at once could also be used, but a two-step approach

usually results in a more accurate model of the true plant [19]. The two-step

identification procedure and results are now described.

In the first step, a state-space model of the deterministic part of the plant,

which was defined in Equation (49), is identified by switching off the input

signal into the primary loudspeaker. An input/output data-set

{u(n),


yp(n)

yv(n)

}
32000
n=1 (68)

is recorded, with yp(n) the measured physical secondary disturbance, yv(n) the

measured virtual secondary disturbance, and u(n) the input signal into the

control source given by the band-pass filtered white noise signal described in

the previous section. The recorded data-set is divided into a training data-set

and a validation data-set each 16000 samples long. The accuracy of the esti-

mated model is expressed by the variance-accounted-for (VAF) value, which

is defined as [19]

VAF =
1

2

2∑
m=1

[
max

(
1− var(Ym − Ŷm)

var(Ym)
, 0

)
× 100%

]
, (69)

where var(·) is the variance of the data sequence between parentheses, Y ∈

R16000×2 is the output validation data-set, and Ŷ ∈ R16000×2 is the data-set

resulting from filtering the input validation data-set with the estimated state-
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space model. The VAF value in Equation (69) is 100% if the matrices Y and Ŷ

are identical, and decreases as the difference in these matrices becomes greater.

In the final experiments, a state-space model of the deterministic part of the

plant of order 32 is estimated, which gives a VAF = 99.9% on the validation

data-set.

[Fig. 4 about here.]

In Figure A.4, the Bode diagram of the estimated state-space model is com-

pared with the frequency response functions between the control input signal

and the measured physical and virtual secondary disturbances, which are cal-

culated from the validation data-set. This figure shows that a good fit on

the validation data is obtained in the frequency band of interest between 50–

500Hz. The high magnitudes at frequencies outside this band occur because

the computer generated input signal has very little energy at these frequencies

while there still is some measurement noise at these frequencies.

In the second step, the control signal is set to zero, and an innovations model

of the stochastic part of the plant, which was defined in Equation (27), is

identified using a stochastic subspace identification algorithm [22]. An output

data-set

{


dp(n)

dv(n)

}
32000
n=1 (70)

is recorded, with dp(n) and dv(n) the measured primary physical and virtual

disturbances, respectively. The recorded data-set is divided into a training

data-set and a validation data-set each 16000 samples long. The accuracy

of the estimated innovations model is evaluated by calculating the VAF value
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based on the validation output data-set and the predicted estimates d̂(n|n−1)

of the output. From Equations (11) and (14), with the control signal u(n) = 0,

these predicted estimates are calculated as

ẑ(n + 1|n) = (Â− K̂sĈ)ẑ(n|n− 1) + K̂sd(n)

d̂(n|n− 1) = Ĉẑ(n|n− 1),

(71)

with Â, Ĉ, and K̂s the state-space matrices that are computed using stochas-

tic subspace identification, and where d(n) = [dp(n) dv(n)]T. In the final

experiments, a 40th order stochastic innovations model is estimated on the

training data-set. For the physical primary disturbances, a VAF = 99.7% is

obtained on the validation data-set, while for the virtual primary disturbances,

a VAF = 98.8% is obtained on the validation data-set.

Using the identified model of the stochastic part of the plant, the state-space

realisation in Equation (48) is calculated as described in Section 4.1. This

state-space realisation computes an optimal current estimate d̂v(n|n) of the

virtual primary disturbance given observations dp(i) of the physical primary

disturbance up to i = n. This state-space model and the state-space model

of the deterministic part of the plant estimated in the first step of the iden-

tification procedure are then used to compute the virtual sensing algorithm

described in Section 4. This algorithm is implemented on the acoustic duct

arrangement.
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6.3 Broadband estimation and adaptive feedforward control performance

The broadband estimation performance of the implemented virtual sensing

algorithm is analysed with the controller switched off. For this case, the virtual

output error was defined in Equation (32) as ε̃v(n) = dv(n)− d̂v(n|n).

[Fig. 5 about here.]

In Figure A.5, the power spectra of the measured virtual primary distur-

bance dv(n) and the virtual output error ε̃v(n) are plotted. These power spec-

tra are generated by averaging over 50 computed power spectra. The overall

mean square value of the measured virtual primary disturbance is 100.0 dB

re 20µPa, and the overall mean square value of the virtual output error is

75.4 dB re 20µPa, which is a difference of 24.6 dB. The power spectrum of

the virtual output error in Figure A.5 shows that an accurate estimate of the

virtual primary disturbance dv(n) is obtained over the entire frequency band

of interest between 50-500Hz.

The filtered-x LMS algorithm described in Section 5 is implemented on the

acoustic duct arrangement to analyse the broadband adaptive feedforward

control performance that can be obtained at the virtual location. The filtered-

x LMS algorithm is implemented using a convergence coefficient µ = 5 · 10−6

and I = 450 filter coefficients. The control performance obtained at the virtual

location while minimising the current estimate êv(n|n) of the virtual error sig-

nal is compared with the control performance obtained at the virtual location

while minimising the true virtual error signal ev(n) directly measured during

real-time control by the electret microphone located at the considered virtual

location. For both cases, the control performance is measured after conver-
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gence of the adaptive algorithm. The results are shown in Figure A.6, where

the power spectrum of the measured virtual primary disturbance dv(n), and

the power spectra of the residual error signal at the virtual location measured

after convergence of the adaptive controller for both control cases are plotted.

[Fig. 6 about here.]

These power spectra are generated by averaging over 50 computed power

spectra. An overall attenuation of 19.7 dB is obtained while minimising the

current estimate of the virtual error signal, compared to an overall attenuation

of 25.1 dB obtained while minimising the true virtual error signal directly

measured at the virtual location, which is a difference of 5.4 dB. One reason for

this difference, which follows from the discussion presented after Theorem 2,

is that a perfect current estimate of the virtual primary disturbance can only

be computed from the physical primary disturbance if these disturbances are

completely causally related, which is not the case for the physical and virtual

sensor configuration considered here. Another reason is that when the virtual

error signal is directly measured during real-time control, the filtered-x LMS

algorithm can partly compensate for small, and generally unavoidable, errors

in the estimate of the virtual secondary transfer path Gvu that is used in

Equation (66) to generate the virtual filtered-reference signal, whereas this

is not the case if the virtual error signal is estimated using a virtual sensing

algorithm [6]. The attenuation is therefore expected to be slightly different at

the deep anti-resonance frequencies in the virtual secondary transfer path (see

Figure A.4), since the accuracy of the estimated model is generally poorest at

these frequencies [23].

[Fig. 7 about here.]

32



The performance obtained at the virtual location while minimising the cur-

rent estimate êv(n|n) of the virtual error signal is also compared with the

performance obtained at this location while minimising the physical error sig-

nal ep(n). The minimisation of the physical error signal is achieved using the

filtered-x LMS algorithm, which is again implemented using a convergence

coefficient µ = 5 ·10−6 and I = 450 filter coefficients. The control performance

obtained at the physical sensor is shown in Figure A.7(a), where the power

spectra of the physical primary disturbance and the residual physical error sig-

nal measured after convergence of the adaptive controller are plotted. These

power spectra are generated by averaging over 50 computed power spectra. An

overall attenuation of 25.0 dB is obtained at the physical sensor. Figure A.7(b)

shows the power spectra of the virtual primary disturbance, the residual vir-

tual error signal obtained while minimising the current estimate êv(n|n) of

the virtual error signal, and the residual virtual error signal obtained while

minimising the physical error signal ep(n). Although an overall attenuation of

25.0 dB was obtained at the physical sensor, the virtual primary disturbance

at the virtual location was actually amplified by 1.4 dB. Thus, minimising the

current estimate of the virtual error signal instead of the physical error signal

increased the overall attenuation obtained at the virtual location by 21 dB.

This result illustrates the potential benefits of adopting the proposed virtual

sensing method over a conventional sensing method, and indicates that the

distance between the physical and virtual sensors is large enough to demon-

strate the effectiveness of the proposed method.
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7 Conclusion

A virtual sensing algorithm for local active noise control systems has been

derived using Kalman filtering theory. The developed algorithm computes an

optimal current estimate of the error signals at locations remote from the

error sensors and can be used when the desired locations of noise reduction

need to be moved away from the physical locations of the error sensors. To

demonstrate the effectiveness of the proposed method in a practical situation,

the developed algorithm has been implemented on an acoustic duct arrange-

ment. The real-time broadband estimation and adaptive feedforward control

performance obtained at a virtual location inside the acoustic duct have been

analysed. The experimental results showed that an accurate estimate of the

virtual error signal was obtained over a broad frequency range, and that subse-

quent minimisation of the estimated virtual error signal resulted in an overall

broadband attenuation of the unwanted noise at the virtual location of 19.7 dB.

Because the proposed virtual sensing algorithm has been derived given a state-

space model that describes the input-output behaviour of a general multiple

input multiple output active noise control system, the proposed method can

also be applied to other cases such as three-dimensional sound fields inside

more complex enclosures.
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A Derivation of a minimal realisation of Ho

Let minimal state-space realisations of the transfer function matrices Gps and

Gvs be given by

Gps ∼


A Bs

Cp Dps

 , Gvs ∼


A Bs

Cv Dvs

 . (A.1)
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Then a minimal realisation of the transfer function matrix Ho in Equation (38)

can be derived as follows.

Outer-inner factorisation of Gps

Assuming that Gps has no zeros on the unit circle, state-space realisations of

the co-outer factor Gps,co, and the co-inner factor Gps,ci are given by [24]

Gps,co ∼


A KDco

ps

Cp Dco
ps

 , Gps,ci ∼


A−KCp B−KDps

Dco†
ps Cp Dco†

ps Dps

 , (A.2)

where Dco
ps is calculated such that

Dco
psD

coT
ps = CpXsC

T
p + R, (A.3)

and where the matrix K is defined as

K = (AXsC
T
p + S)(CpXsC

T
p + R)−1, (A.4)

with the matrix Xs = XT
s ≥ 0 the stabilising solution to the DARE given by

Xs = AXsA
T − (AXsC

T
p + S)(CpXsC

T
p + R)−1(AXsC

T
p + S)T + Q, (A.5)

with

Q = BsB
T
s , R = DpsD

T
ps, S = BsD

T
ps. (A.6)

It can be shown that a state-space realisation of the pseudo-inverse G†
ps,co of

the co-outer factor is given by [24]

G†
ps,co ∼


A−KCp K

−Dco†
ps Cp Dco†

ps

 . (A.7)
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Furthermore, let the matrix Ys be a lower triangular matrix calculated from

a Cholesky factorisation of Xs in Equation (A.5), such that

YsY
T
s = Xs. (A.8)

Then the following matrix relationships associated with the outer-inner fac-

torisation of Gps can be defined [19]

BsD
ciT
ps + AYsC

ciT
ps =Bco

ps (A.9)

BsB
ciT
ps + AYsA

ciT
ps =Ys (A.10)

Dco
psC

ci
ps =CpYs. (A.11)

Derivation of causal part of GvsG
∗
ps,ci

Let state-space realisations of Gvs and Gps,ci be given by Equations (A.1)

and (A.2), respectively, where both realisations are strictly stable, such that

the eigenvalues of the matrices A and Aci
ps = A − KCp are inside the unit

circle. Then a state-space realisation of the causal part of GvsG
∗
ps,ci is given

by [19]

[
GvsG

∗
ps,ci

]
+
∼


A BsD

ciT
ps + AỸsC

ciT
ps

Cv DvsD
ciT
ps + CvỸsC

ciT
ps

 , (A.12)

with Ỹs the solution to the Lyapunov equation

AỸsA
ciT
ps + BsB

ciT
ps = Ỹs. (A.13)
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From Equation (A.10), it can be seen that Ỹs = Ys. Using Equation (A.9),

the state space realisation in Equation (A.12) can therefore also be written as

[
GvsG

∗
ps,ci

]
+
∼


A Bco

ps

Cv Dco
vs

 , (A.14)

where Dco
vs = DvsD

ciT
ps + CvYsC

ciT
ps .

Minimal realisation of Ho

From Equations (A.7) and (A.14), a minimal realisation of Ho in Equation (38)

is now given by

Ho ∼


A−KCp K

Cv −Dco
vsD

co†
ps Cp Dco

vsD
co†
ps

 , (A.15)

where

Dco
vsD

co†
ps = DvsD

ciT
ps Dco†

ps + CvYsC
ciT
ps Dco†

ps

= (DvsD
ciT
ps DcoT

ps + CvYsC
ciT
ps DcoT

ps )(Dco
psD

coT
ps )−1.

(A.16)

Using Equations (A.3), (A.8) and (A.11), and the fact that Dps = Dco
psD

ci
ps as

can be seen from Equation (A.2), Equation (A.16) can also be written as

Dco
vsD

co†
ps = (DvsD

T
ps + CvXsC

T
p )(CpXsC

T
p + R)−1. (A.17)

The state-space realisation in Equation (A.15) can thus also be written as

Ho ∼


A−KCp K

Cv −MCp M

 , (A.18)
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where the matrix M is given by

M = (DvsD
T
ps + CvXsC

T
p )(CpXsC

T
p + R)−1. (A.19)
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minimising êv(n|n) residual virtual error signal while
minimising ep(n). 49

42



plant

virtual sensing
algorithm

adaptive
controller

u( )n

e
v
( )n

e
v
( )n

e
p
( )n

s( )n

x( )n

^

S

+

v
v
( )n

v
p
( )n

+

S
+

+

Fig. A.1. Block diagram of the active noise control problem.

43



dp( )n dv( | )n n
S

_
+ ev( )n

dv( )n
Gvs

Mv

Mv

Mv

Gps

M Mp v+

H

Mp

e

e( )n

~

~

^ ~

e

Fig. A.2. Block diagram of the optimisation problem, with Mp physical sensors and
Mv virtual sensors.

44



x

xvxph

L

xs xp

virtual error
sensor

physical
error sensor

Fig. A.3. Schematic diagram of a the acoustic duct arrangement.

45



0 200 400 600 800
−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

0 200 400 600 800
−200

−100

0

100

200

Frequency (Hz)

P
ha

se
 (°)

0 200 400 600 800
−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

0 200 400 600 800
−200

−100

0

100

200

Frequency (Hz)

P
ha

se
 (°)
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terministic part of the plant , compared to the measured frequency response
functions between the control input signal and the secondary physical (left) and
virtual (right) disturbances calculated from the validation data-set.
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Fig. A.5. Real-time estimation performance of virtual sensing algorithm for
u(n) = 0. virtual primary disturbance dv(n) estimated primary disturbance
d̂v(n|n) virtual output error ε̃v(n).
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Fig. A.6. Real-time control performance at virtual location after convergence of
adaptive algorithm. primary disturbance dv(n) residual virtual error signal
while minimising êv(n|n) residual virtual error signal while minimising ev(n).

48



0 100 200 300 400 500 600
30

40

50

60

70

80

90

Frequency (Hz)

Po
w

er
 s

pe
ct

ru
m

 (
dB

 r
e 

20
µ 

Pa
)

(a) physical sensor
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Fig. A.7. (a) Control performance at physical sensor while minimising ep(n).
physical primary disturbance dp(n) residual physical error signal ep(n).

(b) Control performance at virtual location while while minimising ep(n). vir-
tual primary disturbance dv(n) residual virtual error signal while minimising
êv(n|n) residual virtual error signal while minimising ep(n).
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